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AVERAGING METHOD IN COMPUTING A PLATE 
REINFORCED WITH A STRINGER* 

V.V. LOBODA 

A three-dimensional problem of the theory of elasticity is considered for a half- 
layer reinforced with a stringer and end-loaded with a symmetric load. The averag- 
ing approach is used, together with the method of asymptotic integration. It is 
shown that the state of stress in the structure can be separated into an averaged 
state described by two-dimensional equations for a reinforced plate, and a supple- 
mentary state governed by three-dimensional effects within the region of the rib. 
The distribution of the contact stress across the stringer width is obtained, and 
the character of the stress statenearthe zoneofcontactstudied. Itis shownthat the 
supplementary stresses are of the same order as the shear stress of the averaged 
state. 

1. In solving the reinforced plates and shells, the influence of the ribs is accounted 
for, as a rule, by inserting additional terms into the equations of equilibrium, the terms con- 
taining the distribution functions of the contact stresses across the width of the region of 
contact /l/. However, when solving the practical problems, we either assume that the distri- 
bution is uniform, or that the rib and the casing interact with each other along a line. The 
approximation proposed relates to the fact that the contact stress distribution is not known 
and can only be determined by considering the rib and the casing withthe frameworkofthethree- 
dimensional theory of elasticity, which presents appreciable difficulties. 

We consider an isotropic half-layer reinforced by a stringer (Fig.1). A load periodicin 
zc and symmetric about the x,-axis, with 

zero moment about the neutral plane, is 
applied at the end 5, = 0. The half-wave 
length nl of the load is much largerthan 
the plate thickness 2h andthetransverse 
dimensions 2b and d of the stringer. 
Taking into account the character of the 
lcad, we can assume thattheonlystresses 
appearing between the plate and the rib 
are longitudinal contact stresses qr(m,,~~) 
directed along the ml-axis. Then the 

Fig.1 problem can be described by the following 
system of equations: 

L, (u") + 6 (r.l -h) H, (~2) 41 (zlr 5%) = 0, L, (un) = 0 (1.1) 

L, (UP) - 6 (Js - h) Q, (X1, 5?) = 0, L, (u") = 0 (1.2) 
u" = {z+", u2n, Uan}, up = {ulP. lLzlJ, UQP) 

HI (~2) = H (52 + b) - H (x.2 - b) 

Here &(u) are the Lame operators, un and us' are the plate and rib displacement vectors, 6 (X3). 
H(z,) are the generalized Dirac and Heaviside functions, respectively, i and p are the elastic 
Lam6 constants and the indices ilk, j assume, for now on, the values of 1,2,3; 2,3 and 1,2 
respectively. The boundary conditions at the rib edges and the plate foundations are homogen- 
eous. 
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Averaging method in computing a plate 651 

To solve the problem we employ the concept of averaging, and thus obtain the intiial ap- 

proximation using the averaged relationships. To formulate the averaged problem for a plate 
we assume that QI(%,x~) acts in a concentrated manner along the mean line of contact, thatthe 
stress OX?' = 0, and integrate (1.1) across the thickness. This, together with the conditions 
at the planes 5. = +h, yields 

L,*(uY*> G*) + 
SC.%) - TqI("I)=O> L,*(ur*,u;*)=O (1.3) 

h I) 

u;*@l,"?) = & s 

1 
~7 (a, .G> Q) dx,, Ul (Zl) = s 

q1 @I, 4 dx, (1.4) 
--h --b 

where L,, and L,, are the Lam& operators in the case of a generalized plane state of stress. 
Assuming that uz2' = oa3" = 0, intergrating (1.2) over the area of transverse cross section 

of the stringer F, and taking into account the conditions at the side edges, we obtain the 
following averaged expression for the rib: 

(1.5) 

Assuming that the displacements of the plate and rib coincide along the line of contact 
(Undo (x1) = u,*"(x~, 0)) we obtain, from (1.3) and (1.5) , 

(1.6) 

The boundary conditions for (1.6) are obtained by integrating, with respect to x.3 , the bound- 
ary conditions specified at the end x1 = 0. The problem formulated in this manner represents 
a problem of generalized plane stress state for a reinforced plate. From the conditions 

%3*n = 0 and (~~2~ P- 
- u33* * = 0 we obtain (v is the Poisson's ratio) 

aup 
u& = - xwh P- au,v* u** - - w2 dr, > UT, = -- % (La _1- Xh) +- 

I 
au:* s 

q= as, + az, j 
v 

x-1--2. 

and the displacements of the stringer and plate coincide on the line 12 = 0, XX = h. 

2. Let us adopt the values uien as the initial approximation to the solutionofthe system 
(1.1) , and UI*" (51) = UN" (x1,0), uzz,zp, useli as the initial approximation to the solution of the 
system (1.2), and write the solutions sought in the form 

"'1 X "*n + V ( u” = II*?’ + w; v r {V,, J’?, V,}, w = {Iv,, w2, Ws} (2.1) 

where V andW are the additional plate and rib displacement vectors respectively. Substitut- 
ing (2.1) into (l.l), (1.2) and into the boundary conditions at the plate foundations and rib 
edge, we obtain 

(2.3) 

Cu’ 
as (W Lfb = t w -yj$ ? h (w) ]n=fb = ‘hs (w) !x,=ib = 0 

&P 

ala(W)J&=Yph+, u13(W)j =,, d=vp(h+d)z x1 + dq’ 

033 (W) Ixr==-h, *+* = (J.23 (W) Ir*=h. h+d = 0 
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The boundary value problems (2.2) and (2.3) formulated here appear not to be simpler than the 
initial problems. They have however the advantage that the variables V and \V sought, as well 
as the corresponding stresses, can be written in the form of two terms each of which varies 
rapidly either with respect to the coordinates x2 and xg, or with respect to x3 only (the 
first term for the plate). This enables us to apply, with success, the asymptotic methods to 
the study of the additional state of stress. 

We seek the solution of the system (2.2) in the form of a sum of solutions ofthesystems 
(2.4) and (2.5): 

L, (V”‘J _ “p _g., L, (V’)) = xpxd,$ (2.4) 

(ccl) - 6 (53 - 11) UI (X2) Ql (a, .Q), L, (V!“) = CJ (2.5) 

A particular solution of the system (2.4) satisfying the boundary conditions of (2.2) is ob- 
tained by the asymptotic method using the stretching of the coordinate z3 /2/, and has the 
form 

(2.6) 

This solution satisfies the system (2.4) with the accuracy of up to the terms -v2+ compared 
with 1, and the boundary conditions of (2.2) with the accuracy of v2s12 (Q is a smallparameter 
equal to h/l). 

To find the solution of the system (2.5) satisfying the homogeneous boundary conditions 
at the foundations, we make use of the fact that the right-hand part of the system (2.5) can 
be regarded as a mass force which is self-equilibrated in the region Ix3 /G/L, 11~ ) <b for every 

XI 

This means that in accordance with the Saint-Venant principle, the corresponding stress state 
will be rapidly attenuated with increasing distance from the region of contact, i.e. it will 
vary rapidly in 12 and 2, - Therefore we introduce the change of coordinates z: = Elly. 53 -= 
F,,.F~ and write the unknown variables in the form 

Substituting these into the system (2.5) and the homogeneous boundary conditions at the found- 
ations, and collecting together the terms accompanying like powers of cl, we obtain 

(2.8) 

(2.9) 

where n = 0,1,2...; and Vi, are zero when n<O. We see that 
decomposed into a sequence of two-dimensional boundary value 

strip lx8 I<k IQ 1-c 00. 

the three-dimensional problem has 
problems (2.8), (2.91 forthehalf- 
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In the zero approximation (n = 0) the boundary value problem (2.9) yields the trivial solu- 

tion (V,, = Vao = 0), and (2.8) has the form 

The solution of the boundary value problem (2.10) is obtained with the help of the integral 
Fourier transforms /3/ with infinite (in x2 ) and finite (in rQ ) limits, in the form (basic 

coordinates are used for convenience) 

(2.11) 

The subsequent approximations Vi(?) can be obtained without any fundamental difficulties. It 

should be noted that the solution (2.11) fails in the region 153 I<<, /x2 I,(b,s,G 2h where 
the state of stress varies at the same rate in all three coordinates. 

The additional solution for the rib, as well as for the plate, consists of a particular 
solution of the first type 

(2.12) 

intended for the compensation of discrepancies in the boundary conditions in (2.3), and the 
solution of the system 

(2.13) 

with homogeneous boundary conditions at the side edges. To obtain the latter, we take into ac- 
count the fact that for every zI 

perform the change of coordinates xz = E2Xz*,x3 = E&,* and write the solution in the form 

As a result, we obtain a recurrent process analogous to (2.8) and (2.9). The principal compon- 
ent WC*) is found from the following boundary value problem: 

SWll, IPW,, 
-+dz,*2=- az2* 2 

Ez’ 

P 

awl0 
T=- .Q’=fb,& 

= 0, aw,, 
= 0 

P d@ xi*=h/tz. (d+h)/c, 

the solution of which is obtained using Fourier transform with finite limits /3/. Thesolution 
has the form 

w:p', WI0 _ _ W;1) [(W&V -k$+LJ_ (2.14) 

Y&g 

chat++-) i 

tshtin 
*=I -Ib 

91 CQ, z2) cos -g (sz + b) x 

dx, cos $f (xz + b), 
d 

a=x 
It should be noted that the additional solutions (2.61, (2.11) and (2.12), (2.14) obtained con- 
tribute towards the boundary conditions at the end face only the self-equilibrating errors,and 
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their validity in the integral sense is not therefore affected. The boundary conditions at 
the end face can be satisfied exactly by constructing a state of stress of the boundary layer 

type /2,4/. 

3. The results obtained show that when a load of the type shown is applied, longitudinal 

displacements Uln and Ulp prevail in the region of contact, and the transverse displacements 
are of higher order of smallness. For this reason we determine the unknown contact stress 
Q~(Z~,%) by writing the conditions of equality of the longitudinal displacements of the half- 

layer and rib at every point of the area of contact, as 

The relation (3.1) must hold for every x1 and 1% I< b and the average displacement of the rib 
U1*P (X1) Ez U1*7' (x1,0) does not vary across the strip width. The displacements V1cl) and W1(1) in 

(3.1) are not taken intoaccount, since they are of second order of smallness compared with the 

terms given. Substituting into (3.1) the expressions for v,(') (2.11) and wl(*) (2.14), we ob- 

tain the following integral equation: 

(3.2) 

cx m 

4 c q1 (xl, 5s) cos $- (x, + b) dxz cos $- (x2 + b) = cp (x1, x2) + w \ =+Qj 
1-l -_ 

(x1 appears in the equation as a parameter). 

To solve (3.2) we write the unknown contact stress in the form 

q1 (Xl, x2) = a0 (Xl) + a, (Xl) cos T (3.3) 
rn=l 

Here only the even harmonics are retained, since in this case the function q,(z1,x2)is even in 

J$ . Substituting (3.3) into (3.2) we obtain 

2a. \ -+$f- cth pyn dp + c (1, [i, (4 + P,,, cos F (x2 + b)] - ‘p h, x2) - -%$ dp = 0 “7’2 (3.4) 

-m nz=1 --C 

f, (x2) = - 2 (- 1)” \ cth pyn $j++ cos pz2 dp 
. m -m 

p,=Zb+cthZa,Tzn; ",,,+ 

In order to calculate aO, a,, . . . , we shall require that the right-hand side of the relation 

(3.4) be orthogonal, on the interval (x2 1 <b, to the complete system of functions COS (nnz&‘) 

(n = O,l, 2...)/5/. Multiplyingtheleftand right part of (3.4) by each function and integrating 
over the limits shown, we obtain 

m 

c g,,ak = DO, gnmam+ $cth (2ann)a,=D, 
m=o m=o 

m 

go,=4 \ Xo(P)dP, x0 (p) = y cth pysl 
-cz 

(3.5) 

,> 
g%n =g,o= - 4(- i)_i p ,;;",, cth pyn dp 

R nm = 4 (- l)m+n _[ (h,:P~f;gP'~_Q')cthpyndp (m=l,&..) 
n 
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sin pb 
xl(P)=pl 

The system (3.5) representes an infinite system of equations for 00, a~,. . . . The functions 

x0(p) and X,(P) appearing under the integral sign in the formulas for gQO and DO have second 
order power singularities when p -to. From this it follows that the system (3.5) has a solu- 

tion, if 

jiinIla&(p)- g'(zI;;l(p) J;_O 

and hence %I = c1 ($1) / (26). The last result fully agrees with the second relation of (1.4) and 
underlines the absence of contradictions in the approach used. It should be noted that the 

left-hand part of the system (3.5) does not depend on the type of the external load.Moreover, 
as the numerical analysis indicates, the system (3.5) is regular /5/ and can therefore be 

easily solved by truncation method. 

4. We consider, as an example, a reinforced half-layer (Fig.1) with the following bound- 
ary conditions given at its end face: 

Ip 
01, = E!(r,)cos -i_ ; IIJ511g=o for XI;0 (4.1) 

In this case the averaged boundary conditions for (1.6) have the form 

Taking into account the fact that the load (4.2) is symmetric in ry, we can formulate the 

boundary value problem (1.6), (4.2) as a plane problem for a plane quadrant, writing the bound- 
ary conditions at z,= 0 in the form of conditions for a reinforced edge 

Lj* C”F*3 ut*) = Oi 
EF atu:, 

aZ* 4 4kT = 0, 
1 I rr=o G I *,=o = 0 (4.3) 

To solve the boundary value problem (4.2), (4.3), we apply infinite sine and cosine 
Fourier transforms in 4 to the equations and boundary conditions (4.3). As a result, we ob- 
tain the following system of ordinary differential equations in terms of the transforms 

with the corresponding boundary conditions. Solving this system and returning to the original 
variables, we obtain 

The averaged contact force of interaction between the stringer and the plate is 
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(4.5) 

Substituting the averaged values obtained into the right-hand side of the system (3.5) and 
solving it with help of the method indicated, yields the coefficients n,,o,,.... 

The results obtained were computed numerically for the following initial values of the 
parameters: 

d == 1, ii ;1 == 0.5, i = iu, E iv, v = ll.3, Q IO-2 

The number of equations in the system (3.5) was varied, with the results however remaining 
stable and practically unchanged by increasing the number of equations. Thevaluesofthe first 

coefficients of the expansion (3.3) were as follows: 

o0 =-: ;I 504, (I, = 6.99, a1 58.8, ~3 -31.9. (I, m= 22.8, n5 = --l'i.7, nb m.m 14.5, ,I; m= - 12.4, (I~ ~- i0.8, II, -9.54 

Formulas (4.4) together with the relations of the Hooke's Law for the generalized plane stress 

state, yield analytic expressions for the averaged stresses ~1,r,e,8*,q2t. From the asymptotic 

analysis it follows that the basic stresses of the additional state are snng, slsng, a#, a,,Pg. 
They are expressed in terms of 111(2), We by the formulas 

Figs.2 and 3 show the results of n 

l/2 . The dashed line corresponds 

lumerical computations for the stresses % and um for I~= 

to the averaged stress o,~* and the solid line to the addit- 

ional stresses. Curve 1 is con- 

structed for z3= 0, 2 for z3 = 0.3, 

*In 3 for .r3 = 0.5, and 4 for % = 1. 

600 The shearing stress nlJng jxI_(,,5 -2 

a# ITa=0.5 (curve 3. 1% I K a) co- 
400 incides with the contact stress 

q1 (1/Z, rp). For the purposes of com- 

ZOO 
parison we note that the extrenal 

value (for x1-= I/') has the averag- 

ed stress an* which is equal, for 
0 0.2 0.4 z2 = 1.2 to 6.6.103. 

The results obtained imply 

Fig.2 Fig.3 
that the fundamental stresses of 

the additional state are localiz- 

ed near the zone of contact and 

are comparable with the shear strength of the averaged state, which can be determinedwithhelp 

of the usual numerical schemes. 
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